1,765 research outputs found

    Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review

    Get PDF
    Plastic litter is encountered in aquatic ecosystems across the globe, including polar environments and the deep sea. To mitigate the adverse societal and ecological impacts of this waste, there has been debate on whether ‘biodegradable’ materials should be granted exemptions from plastic bag bans and levies. However, great care must be exercised when attempting to define this term, due to the broad and complex range of physical and chemical conditions encountered within natural ecosystems. Here, we review existing international industry standards and regional test methods for evaluating the biodegradability of plastics within aquatic environments (wastewater, unmanaged freshwater and marine habitats). We argue that current standards and test methods are insufficient in their ability to realistically predict the biodegradability of carrier bags in these environments, due to several shortcomings in experimental procedures and a paucity of information in the scientific literature. Moreover, existing biodegradability standards and test methods for aquatic environments do not involve toxicity testing or account for the potentially adverse ecological impacts of carrier bags, plastic additives, polymer degradation products or small (microscopic) plastic particles that can arise via fragmentation. Successfully addressing these knowledge gaps is a key requirement for developing new biodegradability standard(s) for lightweight carrier bags

    Occupational cooling practices of emergency first responders in the United States: A survey

    Get PDF
    This is an accepted manuscript of an article published by Taylor & Francis in Temperature on 29/07/2018, available online: https://doi.org/10.1080/23328940.2018.1493907 The accepted version of the publication may differ from the final published version.© 2018 Informa UK Limited, trading as Taylor & Francis Group. Despite extensive documentation directed specifically toward mitigating thermal strain of first responders, we wished to ascertain the degree to which first responders applied cooling strategies, and what opinions are held by the various agencies/departments within the United States. An internet-based survey of first responders was distributed to the International Association of Fire Chiefs, International Association of Fire Firefighters, National Bomb Squad Advisory Board and the USA Interagency Board and their subsequent departments and branches. Individual first responder departments were questioned regarding the use of pre-, concurrent, post-cooling, types of methods employed, and/or reasons why they had not incorporated various methods in first responder deployment. Completed surveys were collected from 119 unique de-identified departments, including those working in law enforcement (29%), as firefighters (29%), EOD (28%) and HAZMAT technicians (15%). One-hundred and eighteen departments (99%) reported heat strain/illness to be a risk to employee safety during occupational duties. The percentage of departments with at least one case of heat illness in the previous year were as follows: fire (39%) HAZMAT (23%), EOD (20%) and law enforcement (18%). Post-cooling was the scheduled cooling method implemented the most (63%). Fire departments were significantly more likely to use post-cooling, as well as combine two types of scheduled cooling compared to other departments. Importantly, 25% of all departments surveyed provided no cooling whatsoever. The greatest barriers to personnel cooling were as follows–availability, cost, logistics, and knowledge. Our findings could aid in a better understanding of current practices and perceptions of heat illness and injury prevention in United States first responders. Abbreviations: EOD: explosive ordnance disposal; HAZMAT: hazardous materials.This project is financially supported by the United States Government through the United States Department of Defense (DOD).Published versio

    Development of a Diesel Surrogate Fuel Library

    Full text link
    [EN] Diesel fuel is composed of a complex mixture of hundreds of hydrocarbons that vary globally depending on crude oil sources, refining processes, legislative requirements and other factors. In order to simplify the study of this fuel, researchers create surrogate fuels to mimic the physical and chemical properties of Diesel fuels. This work employed the commercial software Reaction Workbench - Surrogate Blend Optimizer (SBO) to develop a Surrogate Fuel Library containing 18 fuels. Within the fuel library, the cetane number ranges from 35 to 60 (in increments of 5) at threshold soot index (TSI) levels representative of low, baseline and high sooting tendency fuels (TSI = 17, 31 and 48, respectively). The Surrogate Fuel Library provides the component blend ratios and predicted properties for cetane number, threshold soot index, lower heating value, density, kinematic viscosity, molar hydrogen-to-carbon ratio and distillation curve temperatures from T-10 to T-90. A market petroleum Diesel fuel with a cetane number of 50 and a threshold soot index of 31 was selected as the Baseline Diesel Fuel. The combustion, physical and chemical properties of the Baseline Diesel Fuel were precisely matched by the Baseline Surrogate Fuel. To validate the SBO predicted fuel properties, a set of five surrogate fuels, deviating in cetane number and threshold soot index, were blended and examined with ASTM tests. Good agreement was obtained between the SBO predicted and ASTM measured fuel properties. To further validate the Surrogate Fuel Library, key properties that were effected by altering the component blend ratios to control cetane number and TSI were compared to a set of five market Diesel fuels with good results. These properties included density, viscosity, energy density and the T-10 and T-90 distillation temperatures. The Surrogate Fuel Library provided by this work supplies Diesel engine researchers and designers the ability to analytically and experimentally vary fuel cetane number and threshold soot index with fully-representative surrogate fuels. This new capability to independently vary cetane number and threshold soot index provides a means to further enhance the understanding of Diesel combustion and design future combustion systems that improve efficiency and emissions.Szymkowicz, P.; Benajes, J. (2018). Development of a Diesel Surrogate Fuel Library. Fuel. 222:21-34. https://doi.org/10.1016/j.fuel.2018.01.112S213422

    Evaluation of cross-contamination of nylon bags with heavy loaded gasoline fire debris and with automotive paint thinner

    Get PDF
    Nylon bags are used for packaging fire debris in several countries, particularly in Europe. The possibility of cross-contamination during transport from the fire scene to the laboratory, in normal casework conditions in the UK, was studied for two brands of nylon bags, using simulated heavy loaded fire debris. Three experiments were carried out with each brand, using as sample a piece of cotton fabric soaked with gasoline. One experiment was carried out using automotive paint thinner (oxygenated solvent). Each sample was sealed in a nylon bag and stored in contact with eight empty bags. The empty bags were analysed at regular intervals for a period of time up to eight weeks, using SPME and GC/MS. Cross-contamination was found for components of gasoline (toluene and C2-alkylbenzenes) in the two brands of nylon bags used, after 4 days and 2 weeks. Cross contamination using automotive topcoat thinner was detected after 2 days

    Critical Grain Size of Fine Aggregates in the View of the Rheology of Mortar

    Get PDF
    The aim of this research was to investigate the validity of the Krieger-Dougherty model as a quantitative model to predict the viscosity of mortar depending on various aggregate sizes. The Krieger-Dougherty model reportedly predicted the viscosity of a suspension, which includes cement-based materials. Concrete or mortar incorporates natural resources, such as sand and gravel, referred to as aggregates, which can make up as much as 80% of the mixture by volume. Cement paste is a suspending medium at fresh state and then becomes a binder to link the aggregate after its hydration. Both the viscosity of the suspending medium and the characteristics of the aggregates, therefore, control the viscosity of the cement-based materials. In this research, various sizes and gradations of fine aggregate samples were prepared. Workability and rheological properties were measured using fresh-state mortar samples and incorporating the various-sized fine aggregates. Yield stress and viscosity measurements were obtained by using a rheometer. Based on the packing density of each fine aggregate sample, the viscosity of the mortar was predicted with the Krieger-Dougherty model. In addition, further adjustments were made to determine the water absorption of fine aggregates and was transferred from successful experiment to simulation for more accurate prediction. It was also determined that both yield stress and viscosity increase when the fine aggregate mean size decreases throughout the mix. However, when the mean size of the fine aggregates is bigger than 0.7 mm, the yield stress is not affected by the size of the fine aggregate. Additionally, if aggregate grains get smaller up to 0.3 mm, their water absorption is critical to the rheological behavior

    Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts.</p> <p>Methods</p> <p>A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences.</p> <p>Results</p> <p>Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant.</p> <p>Conclusions</p> <p>The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.</p
    corecore